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LOCAL CONVERGENCE OF THE MULTI-SECANT METHOD FOR
THE PARALLEL SOLUTION
OF SYSTEMS OF NONLINEAR EQUATIONS

Thomas F. Coleman ! and Guangye Li ?

1. Introduction. Coleman and Li {2 recently proposed several parallel algo-
rithms for the solution of systems of nonlinear equations

(1) F(z)=0

where F : R* — R™ and F is differentiable with Jacobian matrix J(z). The algorithms
proposed in {2] are applicable to message-passing multiprocessor computers where each
processor has local memory and there is no shared (global) memory; Coleman and
Li ‘2] discussed implementation details and provided results of numerical experiments
obtained on an Intel hypercube computer (iPSC). The algorithms discussed in [2] are
global algorithms based on the trust region/dogleg idea first proposed by Powell 6!
and then refined and implemented in Minpack [5].

In this note we analyze the local behaviour of one of the methods proposed in :2':
the multi-secant method. This method can be implemented on any multiprocessor
topology but is most natural on a ring of processors. We assume that there are p
processors, or nodes, labelled Py, Py, ..., P,—1 such that P; is connected to Py (mod p)
for i = 0 : p — 1. Further we assume that n > p and that each processor has enough
local memory to store roughly n/p columns of the Jacobian approximation B. (Of
course in practise we must be able to store a factorization of the matrix B but we
ignore such details here - see 2! .)

We assume the columns of B have been partitioned amongst the p nodes: define
I(j) to be the index set of columns of B stored on node j. Another major assumption
behind the multi-secant method is that the evaluation of F(z) at any point z is not
a distributed computation. Specifically, we assume that every node has a copy of
the subroutine that evaluates F: this subroutine is sequential (Coleman and Li {2]
also considered algorithms for the case when F(z) can be evaluated in a distributed
parallel manner) and F(z) can be evaluated by any node (given z) without requiring
further communication with other nodes.

A high level description of the multi-secant algorithm is illustrated in Figure 1.

The implementation (including globalization) is discussed in [2]; here we are con-
cerned only with the asymptotic analysis concerning the multi-secant update.

As mentioned in Figure 1, once s is determined F' is evaluated at p points con-
currently. Specifically, each node evaluates F' at a different point. Node 0 evaluates
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Guess an initial z; )
Evaluate F(z) and determine an initial B;

Repeat
Solve Bs = —F(z) ;
Evaluate F at p points (including z + 3);
Update B using the multi-secant update (rank p) ;
T — T+ S;

F1G. 1. Local multi-secant algorithm

F(z + s); node j, 1 < j < p— 1, evaluates F(z + s’) where s’ is a sparse projection
of s. That is, component i of s’ will be either s; or 0. In particular, s° = s and for
j=1l:p-1,

oG,

=0

=3"

(2) if{fi—1=jmodp} or {s¥=0,0<k<j}then s

(3) otherwise s

-y,

After evaluation, each node sends a copy of its newly computed function value
to its higher numbered neighbor on the ring. Hence, after this shift, node 5 will have
the vectors F(z), F(z + s7), and F(z + s(—1) med 7).

We now demand that each node satisfy its own local secant equation. Notation:
For a matrix M let Mj(;) denote the matrix of the same dimensions which matches
M in columns I(j) and whose other columns are zero columns. Define d° = s?~! and
d? = 577! — s/, For j = 0:p— 1 the secant equation for node j is

(4) B;-(j)idj]; = yJ
where 3’ et F(z + s'7!) — F(z + s’). Equation (4 ) is reasonable because
1 . . . .
(5) ([ Jrae = & = rd)on}@) = .
In light of (4), the local secant update for node j, j =0:p —1, is
(6) Bf;) — By + (@ &)7(y’ — Bryd)d’"
where for any scalar a we define the pseudo-reciprocal:
ot — a’! ifa#0
10 ifa =0.
Therefore, the multi-secant method can be written as
p_l .T . . . .T
) B* « 3 (B + (& &) (v’ — Byjd')d’")

i=0
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2. Local and Superlinear Convergence. In this section we establish the local
and superlinear convergence of the multi-secant method.

The multi-secant method we have proposed here appears to be a member of the
broad class of multiple secant methods considered by Schnabel {7]. However, the
analysis given in [7] is not applicable to the method described here for an important
reason: in [7] it is assumed that the matrix of “differencing vectors” - (d°%...,d" 1) in
our case - is always of full rank p. This assumption is crucial to the analysis provided
in [7]; however, it is not a permissible assumption here. For example, at some point
¢ the vector d’ may be equal to the zero vector (for some j).

Assumptions: Let * € D, D an open convex set in R", such that F(z*) = 0 and
J(z*) is nonsingular. Assume that the Jacobian matrix J (z) satisfies the following
Lipschitz condition for all z € D: For every 0 < j < p — 1 there exists a 4; > 0 such
that

(8) | ()15 — J W)y iF< vi il @ =y ll2y YT,y € D,

Hence, if we define v% = 5'";_3 v} then we have the following Lipschitz condition on J:

(9) || J(:B)—J(y) ”FS‘Y:E""'y“h V:l!,yED.

The following lemma is the crucial “bounded deterioration” result needed to estabhsh
the convergence properties. Let P; be the orthogonal projector: P; = (d? T gi )t (d? a7 )
for j = 0 : p—1. Notation: A vector norm is assumed to be the 2-norm unless otherwise

indicated.
LEMMA 1. Let F satisfy the assumptions listed above and let B be generated by
the multi-secant method (7). If z + s C D, j=0:p—1, then

| Bii;y = J(=")rii) Ik
<

| (Brigy = J (=)l = Pil 1} +(3vi0(27,2))?

where o(z*,z) = maz{| =+ —z* ||,]| 2 —=* ||}

Proof. Let E* = BY — J(z*), E = B — J(z*) and define
- 1 : .
(10) J[(J‘) = ‘/(; J[(j)(a: + 8 - TdJ)aT
and therefore
(11) j[(j)dj = yj
Hence, from (6) and (11), it follows that
.T . . . .T .
Efyy = By + (@ &)Y - Biyd)d” - J(=")i)

Exyil - By + (@7 &)y — J(@)sydld”
(12) = Ey - B} + 1) — J(=" )1 Pi-
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But the matrix P; is an orthogonal projector and therefore, from (12),

(13) | B I3=Il Ex)[I = Pi] IF + | Urciy = I (@)l P [l -

Using Lipschitz condition (8), we have

_ 1 . .
| Uiy — (=) Pi e <l /0 [Jrg)(z + 8 + 7d?) — J (215107 |7

1 . ) ,
< (f il + s+ (s = o) = |)or)’
0
1 . .
< ([ allz = 4 5+ @ = D IrY
< 2z - = + 181l
(14) < (3yjo(zt,z))’.
Substituting (14) into (13) yields the desired inequality. .

THEOREM 2. Let F satisfy the assumptions stated above. Let {z(®} be generated
by the multi-secant method(Fig.1, (7)). If there ezist €,§ > 0 such that if ¢® e D
and B, a nonsingular n x n matriz , satisfy

(15) =@ —2*|| <€ (B~ J(=")llr <&

then {z(®} is well-defined and converges q-superlinearly to z*.
Proof. From Lemma 1,

(16) 1Bf;y — J(z")1a)lik < I1Bri) — (=)o |F + (Brio(z™,2))?

and therefore, summing both sides of (16) as j = 0 : p — 1, and then taking square
roots, the following bound is obtained:

(17) IB™ = J(z")l|lr < iB ~ J(z")|F + 37(o(z7,2))-

Therefore, using Theorem 5.1 of {3}, {z{¥)} converges at least g-linearly to z*.
To prove g-superlinear convergence, Theorem 3.1 of [3] states that we need only
show

o IB® = @)@ _
=N FO

(18)

T,
For a given j € {0,1,...,p — 1}, if there is a ko such that ((d’)(k) (d’)(k))+ = 0 for all
k > ko, then [|[BS) — J(z")1;)|(d)™]| = 0 for all k > ko. Otherwise let (@)™} be

Ry S
the subsequence of all points satisfying ((d’ )(k') (d? )(k') )* > 0. Using Lemma 1 and
essentially the same argument used in ({3], p. 58) or ({4, p.183) we have

_IBE - Il @)™ _

i—0o t!(d_-,')(k.')!l 0.

(19)
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Hence, in either case,

(20) lim [[()®) (B - T nl(@) ™ = 0.
But,
I[B® = J(=)s®) _ [B® = J(=")] £52 (&)
s - @]
| S22 1BY0) = Tl (@)
[

(21) < g{uw?;;) — I(=")aa))(@) PN - (@)@}
Therefore, (18) follows from (20) and (21). ]

Note: Coleman and Li [2] briefly discussed the generalized multi-secant method
in which each processor performs a multiple rank update, say rank g. Our analysis
above can be directly applied to this situation as well: it is merely necessary to define

a conceptual multiprocessor with = gp nodes.
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